244 research outputs found

    Expression of functional sphingosine-1 phosphate receptor-1 is reduced by B cell receptor signaling and increased by inhibition of PI3 kinase δ but not SYK or BTK in chronic lymphocytic leukaemia cells

    Get PDF
    BCR signaling pathway inhibitors such as ibrutinib, idelalisib, and fostamatinib (respective inhibitors of Bruton’s tyrosine kinase, PI3Kδ, and spleen tyrosine kinase) represent a significant therapeutic advance in B cell malignancies, including chronic lymphocytic leukemia (CLL). These drugs are distinctive in increasing blood lymphocytes while simultaneously shrinking enlarged lymph nodes, suggesting anatomical redistribution of CLL cells from lymph nodes into the blood. However, the mechanisms underlying this phenomenon are incompletely understood. In this study, we showed that the egress receptor, sphingosine-1-phosphate (S1P) receptor 1 (S1PR1), was expressed at low levels in normal germinal centers and CLL lymph nodes in vivo but became upregulated on normal B cells and, to a variable and lesser extent, CLL cells following in vitro incubation in S1P-free medium. Spontaneous recovery of S1PR1 expression on normal B and CLL cells was prevented by BCR cross-linking, whereas treatment of CLL cells with idelalisib increased S1PR1 expression and migration toward S1P, the greatest increase occurring in cases with unmutated IgH V region genes. Intriguingly, ibrutinib and fostamatinib had no effect on S1PR1 expression or function. Conversely, chemokine-induced migration, which requires integrin activation and is essential for the entry of lymphocytes into lymph nodes as well as their retention, was blocked by ibrutinib and fostamatinib, but not idelalisib. In summary, our results suggest that different BCR signaling inhibitors redistribute CLL cells from lymph nodes into the blood through distinct mechanisms: idelalisib actively promotes egress by upregulating S1PR1, whereas fostamatinib and ibrutinib may reduce CLL cell entry and retention by suppressing chemokine-induced integrin activation

    Transcriptional mechanism of vascular endothelial growth factor-induced expression of protein kinase CβII in chronic lymphocytic leukaemia cells

    Get PDF
    A key feature of chronic lymphocytic leukaemia (CLL) cells is overexpressed protein kinase CβII (PKCβII), an S/T kinase important in the pathogenesis of this and other B cell malignancies. The mechanisms contributing to enhanced transcription of the gene coding for PKCβII, PRKCB, in CLL cells remain poorly described, but could be important because of potential insight into how the phenotype of these cells is regulated. Here, we show that SP1 is the major driver of PKCβII expression in CLL cells where enhanced association of this transcription factor with the PRKCB promoter is likely because of the presence of histone marks permissive of gene activation. We also show how vascular endothelial growth factor (VEGF) regulates PRKCB promoter function in CLL cells, stimulating PKCβ gene transcription via increased association of SP1 and decreased association of STAT3. Taken together, these results are the first to demonstrate a clear role for SP1 in the up regulation of PKCβII expression in CLL cells, and the first to link SP1 with the pathogenesis of this and potentially other B cell malignancies where PKCβII is overexpressed

    Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins.

    Get PDF
    BackgroundThe aim of this study was to elucidate the mechanisms responsible for the location of B-cell non-Hodgkin's lymphoma (B-NHL) at different anatomical sites. We speculated that the malignant B cells in these disorders have the potential for trafficking between blood and secondary lymphoid organs (SLO) or extranodal sites and that their preferential accumulation at different locations is governed by the expression of key molecules that regulate the trafficking of normal lymphocytes.MethodsBiopsy or blood samples from 91 cases of B-NHL affecting SLO (n = 27), ocular adnexae (n = 51) or blood (n = 13) were analysed by immunohistochemistry or flow cytometry for the expression of the following molecules: CCR7, CCL21 and αL (required for the entry of normal lymphocytes into SLO); CXCR4, CXCL12 and α4 (required for entry into extranodal sites); CXCR5, CXCL13 and S1PR2 (required for tissue retention); S1PR1 and S1PR3 (required for egress into the blood). The expression of each of these molecules was then related to anatomical location and histological subtype.ResultsThe expression of motility/adhesion molecules varied widely between individual patient samples and correlated much more strongly with anatomical location than with histological subtype. SLO lymphomas [comprising 10 follicular lymphoma (FL), 8 diffuse large B-cell lymphoma (DLBCL), 4 mantle-cell lymphoma (MCL) and 5 marginal-zone lymphoma (MZL)] were characterised by pronounced over-expression of S1PR2, suggesting that the malignant cells in these lymphomas are actively retained at the site of clonal expansion. In contrast, the malignant B cells in ocular adnexal lymphomas (10 FL, 9 DLBCL, 4 MCL and 28 MZL) expressed a profile of molecules suggesting a dynamic process of trafficking involving not only tissue retention but also egress via S1PR3 and homing back to extranodal sites via CXCR4/CXCL12 and α4. Finally, leukaemic lymphomas (6 FL, 5 MCL and 2 MZL) were characterised by aberrant expression of the egress receptor S1PR1 and low expression of molecules required for tissue entry/retention.ConclusionsIn summary, our study strongly suggests that anatomical location in B-NHL is governed by the differential expression of specific adhesion/motility molecules. This novel observation has important implications for therapeutic strategies that aim to disrupt protective micro-environmental interactions

    Lck is a relevant target in chronic lymphocytic leukaemia cells whose expression variance is unrelated to disease outcome.

    Get PDF
    Pathogenesis of chronic lymphocytic leukaemia (CLL) is contingent upon antigen receptor (BCR) expressed by malignant cells of this disease. Studies on somatic hypermutation of the antigen binding region, receptor expression levels and signal capacity have all linked BCR on CLL cells to disease prognosis. Our previous work showed that the src-family kinase Lck is a targetable mediator of BCR signalling in CLL cells, and that variance in Lck expression associated with ability of BCR to induce signal upon engagement. This latter finding makes Lck similar to ZAP70, another T-cell kinase whose aberrant expression in CLL cells also associates with BCR signalling capacity, but also different because ZAP70 is not easily pharmacologically targetable. Here we describe a robust method of measuring Lck expression in CLL cells using flow cytometry. However, unlike ZAP70 whose expression in CLL cells predicts prognosis, we find Lck expression and disease outcome in CLL are unrelated despite observations that its inhibition produces effects that biologically resemble the egress phenotype taken on by CLL cells treated with idelalisib. Taken together, our findings provide insight into the pathobiology of CLL to suggest a more complex relationship between expression of molecules within the BCR signalling pathway and disease outcome

    Trunk girdling increased stomatal conductance in Cabernet Sauvignon Grapevines, reduced glutamine, and increased malvidin-3-glucoside and quercetin-3-glucoside concentrations in skins and pulp at harvest.

    Get PDF
    Girdling is a traditional horticultural practice applied at fruit set or other phenological stages, and is used mostly as a vine management. In grapevines, it is used primarily for table grapes to improve berry weight, sugar content, color, and to promote early harvest. The objective of this study was to evaluate the effect of trunk girdling applied at veraison, in ?Cabernet Sauvignon? wine grapes (Vitis vinifera L.), on agronomical and physiological parameters during vine development from the onset of ripening (veraison) to harvest, and additionally to quantify the effect of girdling on primary and secondary metabolism. Girdling was applied 146 days after pruning (dap) at veraison, when berry sampling for metabolomics and agronomical evaluations commenced, with a further three sampling dates until harvest, at 156 dap (30% maturation, 10 days after girdling-dag), 181 dap (70% maturation, 35 dag), and 223 dap (commercial harvest, 77 dag). Skin/pulp and seed tissues were extracted separately and metabolomics was performed using one-dimensional proton nuclear magnetic resonance (1D 1H NMR) spectroscopy and high performance liquid chromatography (HPLC-DAD). At harvest, girdling significantly increased stomatal conductance (gs) in vines, decreased glutamine concentrations, and increased anthocyanin and flavonol concentrations in the skin/pulp tissues of grape berries. Berry weight was reduced by 27% from 181 dap to harvest, and was significantly higher in grapes from girdled vines at 181 dap. Sugars, organic acids, and other amino acids in skin/pulp or seeds were not significantly different, possibly due to extra-fascicular phloem vessels transporting metabolites from leaves to the roots. Using a metabolomics approach, differences between skin/pulp and seeds tissues were meaningful, and a greater number of secondary metabolites in skin/pulp was affected by girdling than in seeds. Girdling is a simple technique that could easily be applied commercially on vine management to improve berry color and other phenolics in ?Cabernet Sauvignon? grapes. Keywords: amino acids, biosynthesis, grape and wine, 1H NMR spectroscopy, metabolome, organic acids, phenolic compounds and sugars, Vitis vinifera L

    Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers

    Get PDF
    Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation

    A novel transgenic mouse strain expressing PKC beta II demonstrates expansion of B1 and marginal zone B cell populations

    Get PDF
    Protein kinase Cβ (PKCβ) expressed in mammalian cells as two splice variants, PKCβI and PKCβII, functions in the B cell receptor (BCR) signaling pathway and contributes to B cell development. We investigated the relative role of PKCβII in B cells by generating transgenic mice where expression of the transgene is directed to these cells using the Eµ promoter (Eµ-PKCβIItg). Our findings demonstrate that homozygous Eµ-PKCβIItg mice displayed a shift from IgD+IgMdim toward IgDdimIgM+ B cell populations in spleen, peritoneum and peripheral blood. Closer examination of these tissues revealed respective expansion of marginal zone (MZ)-like B cells (IgD+IgM+CD43negCD21+CD24+), increased populations of B-1 cells (B220+IgDdimIgM+CD43+CD24+CD5+), and higher numbers of immature B cells (IgDdimIgMdimCD21neg) at the expense of mature B cells (IgD+IgM+CD21+). Therefore, the overexpression of PKCβII, which is a phenotypic feature of chronic lymphocytic leukaemia cells, can skew B cell development in mice, most likely as a result of a regulatory influence on BCR signaling
    • …
    corecore